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Wave radiation is studied which is due to a constant load moving with a constant speed
along a circular path over an unbounded Mindlin plate on a Winkler foundation. The steady
state solution of the problem is obtained, showing that the radiation of elastic waves occurs
for all non-zero load velocities. It is shown that the elastic wave "eld radiated by the
supercritically moving load is con"ned in a spiral-like apex. The plate displacements at the
boundaries of this apex are discontinuous. The radiated energy per period of load rotation is
calculated as showing a discrete energy spectrum. For increasing load velocities, the total
amount of radiated energy becomes larger. It is also shown that the major part of the
radiated energy follows the direction of the load motion.
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1. INTRODUCTION

In the branch of mechanics which is devoted to the study of the dynamic processes which
occur due to an interaction of moving objects with elastic structures a certain culture of
knowledge and terminology has been established. Elastic wave radiation generated as
a result of the interaction can be subdivided into a few basic types: Mach radiation
(analogous to Vavilov}Cherenkov radiation in electrodynamics), transition radiation,
di!raction radiation and radiation due to a non-uniformly moving source [1}4]. Most of
these terms were originally generated in electrodynamics, where the need for the study of
radiation due to moving sources (charged particles) was apparent much earlier than in
mechanics.

It is known that a non-uniformly moving source of excitations radiates waves into
a system [5]. Within the wide set of non-uniform source motions, a uniform motion along
a circle can be considered as the simplest one. Indeed, in this motion, the velocity vector of
an object changes its direction, but its value remains unaltered. The radiation emitted
during such a motion possesses various speci"c features that clearly distinguish it from the
basic radiation types mentioned above.

In the present paper, the radiation which is emitted by a constant load moving with
a constant speed along a circle on an elastically supported Mindlin plate is studied. This
model is not a restriction, since the approach can be applied to di!erent models of elastic
systems including three-dimensional systems. Fortunately, the main characteristics of the
radiation can be analyzed analytically, e.g., spectra of radiated energy can be obtained in
closed form.
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Moreover, there is an analogy with cyclotron radiation of electromagnetic waves in
electrodynamics. The cyclotron radiation was discovered experimentally in a cyclic particle
accelerator 1947 [6]. Nowadays, cyclotron radiation is understood in a broad sense as
radiation that is generated by a source of excitations, which moves along a circular path. In
fact, this de"nition is applicable to "elds of any physical nature [7]. Therefore, the present
type of elastic wave radiation can, in some sense, be considered as cyclotron radiation in
mechanics.

In the "rst part of the paper, the steady state behaviour of a plate due to a uniformly
rotating load is determined in order to visualize the radiation process. In the second part,
the radiated energy per period of load rotation and the energy spectra are derived and
analyzed for di!erent load velocities. Finally, the properties and the possible application of
the radiation in mechanics are discussed.

2. MODEL

An unbounded plate (Mindlin plate) is considered with mass density o and #exural
sti!ness D"Ed3/(12(1!g2)) ME, Young's modulus; g, the Poisson ratio; d, thickness of the
plateN, resting on a elastic foundation with sti!ness i. The plate is subjected to constant load
PI , which moves with a constant angular velocity X3 "v/rJ

0
along a circle with radius rJ

0
, see

Figure 1 (v"DVD is the load velocity).
The dimensionless equations describing the motion of the system are [8]
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where tx(x, y, t) and ty(x, y, t) are the local rotations in the x and y directions respectively,
;(x, y, t) is the transverse displacement of the plate, and P is the magnitude of the load.
These dimensionless variables and parameters in equations (1)}(3) are introduced according
Figure 1. Model and reference system.
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to the following de"nitions (the dimensional quantities are marked by &)
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where u
0

is the eigenfrequency of the plate on an elastic foundation, a is the ratio between
the compressional and modi"ed shear wave velocities, c

l
and c

0t
are compressional and

shear wave velocities, k is the shear modulus of the plate material, and s is the numerical
coe$cient related to Mindlin's plate theory.

3. STEADY STATE SOLUTION TO THE PROBLEM

Application of the following Fourier transform over plane spatial co-ordinates
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to the system of equations (1)}(3), results in the system of ordinary di!erential equations
with respect to time:
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Using the following relation:
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(z) the Bessel function of the "rst kind, the exponent in the right part of equation (7)

can be expanded into an in"nite series as follows:
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). A solution to the linear system

(equations (5)}(7)) with the modi"ed right part (equation (8)), can be presented as a sum,
where each term is a solution of the system

tx
nk,tt

#a2(k2
1
#mk2

2
#c)tx

nk
#a2pk

1
k
2
ty
nk
!cik

1
;

nk
"0,

ty
nk,tt

#a2(k2
2
#mk2

1
#c)ty

nk
#a2pk

1
k
2
tx
nk
!cik

2
;

nk
"0,

;
nk,tt

#(k2
1
#k2

2
#1);

nk
#ik

1
tx
nk
#ik

2
ty
nk
"!P (!i)nJ

n
(kr

0
) exp(in(u

k
!Xt)).



48 A. V. KONONOV AND R. DE BORST
Substitution of a partial solution of the form
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into this system, results in a linear albegraic system with respect to unknowns MA
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After solution of this system, C
n

(note that A
n
, B
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are given in Appendix B since we are

merely interested in the plate displacement) becomes
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, t) depends on the magnitude of the wave vector k and its direction. Thus, the

inverse operator for the Fourier transform (4) in a polar system of co-ordinates in the
k-space can be rewritten as
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Application of transform (10) to expression (9) and using the substitution
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and the total transverse displacement of the plate is given by the sum
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The integral in equation (11) can be elaborated analytically employing certain properties
of Bessel function [9], as follows for n*0 and (0 respectively:
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The result (equation (13)) has been obtained taking into account that the total solution
should only consist of outcoming waves (waves travelling from the source of disturbances
towards in"nity) and using asymptotic expressions for the Hankel functions for large
arguments [9]
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periodic real-valued function F (z) expanded into Fourier series the following symmetry
relations hold:
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So, for the steady state plate displacement
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and
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In Figure 2 the results of the numerical calculations of the obtained solution, equation
(14), are depicted for two di!erent load velocities. Clearly, the load radiates elastic waves
into the plate in both cases. It is also observed that for larger load velocities the radiation is
more powerful. The form of equation (14) can also con"rm the presence of the radiation for
any non-zero velocity of the load. As is seen, the solution consists of a symmetric
(cos(n(u!Xt))) and an asymmetric (sin(n(u!Xt))) with respect to the load, even in the
absence of dissipation. This indicates that the reaction of the elastic system at the loading
point is not vertical and has the longitudinal projection. Thus, a certain longitudinal force
and, therefore, energy have to be applied constantly by the external source in order to
maintain a uniform load motion. At large distances from the load, an &&observer'' registers
a series of &&pulses'' at time intervals equal to the period of the load rotation ¹"2n/X, as it
shown in Figure 3. It is noted that an oscillating tail, which results from the dispersion of
the system, follows each pulse.

The longitudinal component f
l
can be calculated using for formula [1]
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The results of calculations are shown in Figure 4. From the "gure it is seen that for the load
velocities smaller than b
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when the radiation is relatively weak, f

l
has two components
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Figure 2. Plate displacements for two di!erent load velocities: (a) b"0)9 and (b) b"1)6.



Figure 3. Time dependence of the &&far-"eld'' plate displacements.

Figure 4. Longitudinal force acting on load: (a) graph of components, (b) vector representation.
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component appears due to load rotation, where b
cr

is the so-called critical velocity:

b
cr
"Ja2!c(a2#2)#2cJa2(c!1)#1/Dc!1D ,

which is de"ned by the fact that a rectilinearly and uniformly moving constant load radiates
the elastic waves if its velocity is larger than b

cr
. Further, for b'b

cr
, when the radiation is

more powerful, the radial component changes sign due to strong wave pressure.

4. ANALYSIS OF THE SOLUTION

It is well known that the elastic "eld generated by a rectilinearly moving load over some
elastic system (for instance an elastically supported membrane or elastic half-space) is
con"ned to a certain apex when it moves supercritically [10]. This apex is the
two-dimensional image of a Mach cone in acoustics. On the border of such an apex the
displacements of elastic system or its spatial derivatives can be discontinuous. The question
thus arises whether similar discontinuity in displacements exists along a certain singular
curve for the circular load motion. This question can be answered by analyzing the
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divergence of L;/Lr. However, the solution (equation (14)) written in the series form is not
convenient for such an analysis. A relevant compact form of the solution can be obtained
with the help of the fundamental solution method.

If the fundamental solution of the di!erential operator (equations (1)}(3)) is known, then
the steady state vertical displacement of the plate is given by the convolution
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Further, introduction of a rotating co-ordinate system, r"r, g"u!Xt, where the steady
state originates, and new integration variable q"t!t@ allows the limit in equation (16) to
be taken as
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Thus, analyzing the singularities of the integrand in equation (17) an expression for the
singular curves is found. For the Mindlin plate the fundamental solution can be written in
the following dimensionless form (the details of this derivation are given in Appendix A):
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Figure 5. Singular curves for two di!erent supercritical load velocities: (a) b"1)2, (b) b"2)5.

Figure 6. Plate displacements near the point load, (a) without and (b) with internal friction in the plate.
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where R"r/r
0
, m"Xq and a"1/b"c

0t
/v. The system of equation (19) can have

a solution if the following relations between g and R hold:
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An analysis of equation (20) shows that the relations between g and R describe a certain
singular curve (which consists of two parts g

1
and g

2
) on the plate if the parameters are

taken as follows: a(1Nv'c
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, i.e., such a curve exists when the

load moves supercritically. In Figure 5, two such singular curves are depicted for di!erent
supercritical load velocities. The thin line denotes g

1
, the thick line denotes g

2
and the

dashed line represents the path of the load respectively.
It is observed that the radiated "eld is bounded by a spiral-like apex, whose vertex

coincides with the instantaneous load position. At large distances from the load (RPR) the
sides of the cone approach a simple spiral form, which can be approximated as R&bg

1,2
.

Further analysis shows that along g
1

the plate displacements exhibit a jump and along g
2

the displacements tend to in"nity (!R). This divergence of the displacements can be
considered as a &&bad feature'' of the model and it can be avoided (as physically non-realistic)
by taking into consideration, for example, the internal friction in the plate material (as it is
shown in Figure 6(b)).

A qualitative geometrical interpretation of the system of equation (19) given as follows.
Equation (19a) describes the geometrical position of the set of successive circular wave



Figure 7. Set of successive circular wave fronts moving out from successive positions of a load, with moves (a)
subcritically, (b) supercritically.
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fronts with radius am emitted by the point-like source at the times m, which moves with unit
angular velocity along a unit circle (see Figure 7).

This parametric set of the circles either has a common envelope or a tangential curve,
if load moves supercritically (see Figure 7(b)). An explicit or an implicit equation for the
tangential curve can be found by solving the system of equations (19). Evidently, along
the tangential curve, the wave fronts emitted by a moving source of disturbances at the
successive moments of time superpose in-phase to produce a &&shock'' front. In a 2-D case for
the models with a limited wave velocity, this leads to a discontinuity of the displacement
along the tangential curve, as shown in Figure 6. In the problem under consideration, such
a &&shock'' front implies a discontinuity of the displacements of the plate near the tangential
curve.

5. ENERGY SPECTRUM

As can be deduced from equation (9), the rotating load radiates a discrete frequency
spectrum with the frequencies u
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proportional to the angular frequency of the load rotation
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real-valued. In order to study the energy characteristics of the radiation, the radiated energy
per period of the load rotation E
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where (. , .) denotes the scalar product. The density of the energy #ux S
n
in equation (22) is

given by (for a derivation of S
n

the reader is referred to Appendix B)
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large r inversely proportional to r gives (the &&wave zone'' [7] is considered)
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where A
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From this expression, it follows that for u!Xq"n/2, Sr
n
attains a maximum. Physically,

it means that the energy #ux reaches a maximum when a vector r that is pointed in the
direction of an &&observer'' is parallel to the load velocity vector as depicted in Figure 8. In
other words, the largest part of the radiated energy follows the direction of the load motion.

Finally, the expression for Sr
n

(equation (24)) is substituted into equation (22). After
integration this results in the energy carried away by the nth harmonic of the radiated wave
"eld

E
n
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(k*

(2)n
r
0
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This result is depicted in Figure 9. Since the motion is periodic, the energy spectrum is
discrete. The total amount of radiated energy per load period using equations (21) and (25)
can be calculated numerically. For velocities of the load smaller than the wave velocity
(b(1) it is seen that with increasing load velocity the maximum of the energy spectrum
shifts towards harmonics of higher order and that the total amount of radiated energy



Figure 8. Load mainly radiates in the direction of its velocity.

Figure 9. Energy spectra for three di!erent load velocities.
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becomes larger, but remains "nite. Theoretically, it is possible to obtain the radiation
maximum for very high frequencies by varying the frequency of the load rotations. For
supercritical load velocities (b'1) the total amount of radiated energy is in"nite. Indeed, in
the previous Section it has been shown that when the load moves supercritically (b'1) the
plate displacement is discontinuous along a certain curve. Thus, it follows that the power
radiation should be in"nite.

6. CONCLUSIONS

In this paper, the elastic wave radiation which is due to a constant load moving with
a constant speed along a circular path over an unbounded Mindlin plate on a Winkler
foundation has been investigated. The complete steady state solution of the problem has
been obtained. It has been shown that for all velocities the load radiates elastic waves into
the plate. This radiation is analogous to the cyclotron radiation in electrodynamics. From
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an analysis of the plate displacements, is shown that the elastic "eld radiated by the
supercritically moving load is con"ned in a spiral-like apex. The plate displacements at the
boundaries of this apex are discontinuous. Further, the radiated energy per period of load
rotation has been calculated as displaying a discrete energy spectrum. It has been shown
that for increasing load velocities the total amount of radiated energy becomes larger. The
major part of the radiated energy follows the direction of the load motion. The principal
conclusions and the radiation phenomenon are also valid for the other plate models, since
a load, which is moving non-uniformly over a structure, emits the waves.

Finally, possible applications of the radiation in mechanics are discussed. The analysis
shows that the radiation possesses certain properties that can be used in divices for
a non-destructive inspection. In particular, the following properties are to be underlined:

Direction of the radiation: the radiated energy is mainly concentrated inside the narrow
cone, which has been described in section 4. Therefore, it can be concluded that the
radiation is concentrated inside the narrow beam or, in other words, the radiation is
directed;

Scanning function: due to uniform rotation of the load and, consequently the radiation
cone the scanning function is automatically realized, since the radiation beam passes once
through each point of the outside area during one period of the load rotation;

Certain frequency spectrum of the radiation: a spectrum of the radiation is prede"ned by
the frequency of the load rotation. The corresponding discrete energy spectrum has a clearly
expressed maximum with a location that can be controlled by the rate of the load velocity. It
is theoretically seen that this maximum can be shifted to the ultrasonic range of frequencies.

The majority of non-destructive inspection techniques are based on the wave scattering
phenomenon. This means that information on the specimen condition can be obtained by
analyzing a wave "eld scattered by the specimen. The irradiating wave "eld is generated by
some transducer (usually an ultrasonic one). However, a circularly moving source of
excitations that has been analyzed, without specifying its physical nature, can play a role of
such an elementary transducer.
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APPENDIX A: FUNDAMENTAL SOLUTION FOR MINDLIN PLATE

The fundamental solution G
u
(..) of di!erential operator of problem (1)}(3) can be found

from the system
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By employing the following Fourier transform over plane spatial co-ordinates
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in combustion with the Laplace transform over time
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system (A.1)}(A.3) reduces to the algebraic system

p2t3) x#a2 (k2
1
#mk2

2
#c)t3) x#a2pk

1
k
2
t3) y!c ik

1
G3)

u
"0,

p2t3) y#a2 (k2
2
#mk2

1
#c)t3) y#a2pk

1
k
2
t3) x!c ik

2
G3)

u
"0,

p2G3K #(k2
1
#k2

2
#1)G3)

u
#ik

1
t3) x#ik

2
t3 ) y"1.

The solution of this system with respect to G3)
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is
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Further, inversion of the Laplace transform results in
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It is useful to rewrite the inverse operator for the Fourier transform (A.4) into polar system
of co-ordinates
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Substitution of equation (A.6) into (A.7) and subsequent integration over u
k

gives
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Equations (A.8) and (A.9) can be rewritten in the approximate form as follows:
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where h(..) is the Heaviside step-function and function Gt
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The expression for Gl
u
(r, t) due to a fast decrease of the integrand can be represented as

a sum of two integral with the "nite limits
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The fundamental solution is in a sum form, which consists of two terms (A.10) and (A.11).
The "rst function has a sharp front and the second function is represented by a smooth
function.

APPENDIX B: DERIVATION OF THE ENERGY FLUX DENSITY

The expression for the density of the energy #ux can be found in the following way.
Multiply the "rst equation of the system
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Subsequent summation over the obtained new equations results in the following relation for
the energy conservation:
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where= is the density of energy
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and S
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y
are the components of the vector of the energy #ux
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For the next step the local rotations tx(x, y, t) and ty(x, y, t) have to be elaborated.
According to system (8) for tx
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Applying the following inverse Fourier transform to these expressions:
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Asymptotic analysis of integrals (A.5) and (B.6) for a large distance form the origin shows
that tx

n
and ty

n
are decreasing as 1/rd with d'1. Thus, the input of these functions in the

energy #ux is negligibly small compared to the input of; (..)-terms. So, the vector of energy
#ux can be rewritten as follows S"(S
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